

Simple Chosen-Ciphertext Security from Low-Noise LPN

PKC 2014, 26.03.2014

Eike Kiltz Daniel Masny HGI, Ruhr Universität Bochum Krzysztof Pietrzak IST Austria

RUB

Outline

2 Low-Noise LPN

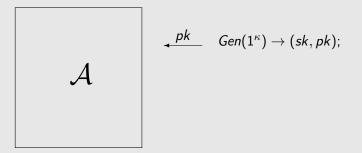
3 Applying Techniques of LWE-Based Schemes

4 Simple TBE Based on Low-Noise LPN

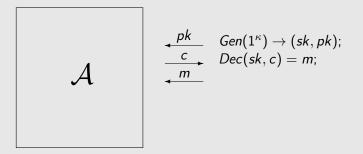
A public key encryption PKE = (Gen, Enc, Dec) is called IND-CCA secure, if for every PPT adversary A holds:

Simple CCA from Low-Noise LPN PKC 2014 26.03.2014

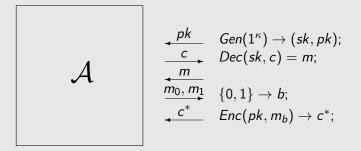
A public key encryption PKE = (Gen, Enc, Dec) is called IND-CCA secure, if for every PPT adversary A holds: For



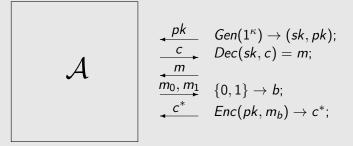
A public key encryption PKE = (Gen, Enc, Dec) is called IND-CCA secure, if for every PPT adversary A holds: For



A public key encryption PKE = (Gen, Enc, Dec) is called IND-CCA secure, if for every PPT adversary A holds: For



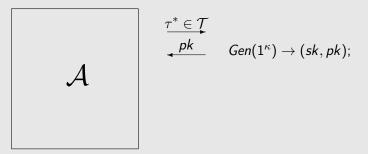
A public key encryption PKE = (Gen, Enc, Dec) is called IND-CCA secure, if for every PPT adversary A holds: For



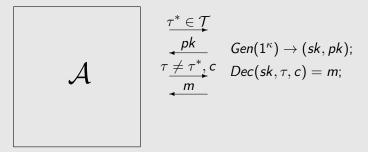
it is hard for \mathcal{A} to guess b.

A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds:

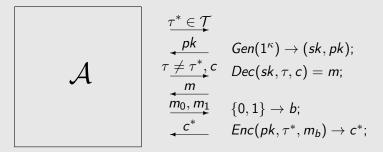
A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds: For



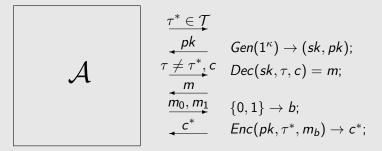
A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds: For



A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds: For

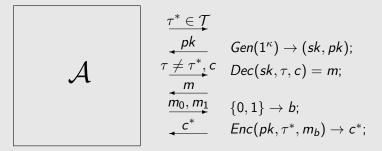


A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds: For



it is hard for \mathcal{A} to guess b.

A tag-based encryption TBE = (Gen, Enc, Dec) with a tag space $\mathcal{T} = \{0, 1\}^{\kappa}$ is called weakly secure, if for every PPT adversary \mathcal{A} holds: For



it is hard for \mathcal{A} to guess b.

Tag-Based Encryption (TBE)

Why Tag-Based Encryption?

► A TBE is easier to construct than an IND-CCA PKE.

Simple CCA from Low-Noise LPN/PKC 2014/26.03.2014

Tag-Based Encryption (TBE)

Why Tag-Based Encryption?

- ► A TBE is easier to construct than an IND-CCA PKE.
- ► There are generic transformations from a weakly secure TBE to a IND-CCA PKE [BK05, Kil06, BCHK07].

Outline

1 IND-CCA PKE

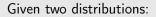
2 Low-Noise LPN

3 Applying Techniques of LWE-Based Schemes

4 Simple TBE Based on Low-Noise LPN

RUB

RUB



Given two distributions:

Given two distributions:



Given two distributions:

Given two distributions:

Given two distributions:

RUB

Given two distributions:

LPN	<u>Uniform</u>
$egin{array}{l} A \leftarrow \mathbb{Z}_2^{2n imes n};\ s \leftarrow \mathbb{Z}_2^n; \end{array}$	$A \leftarrow \mathbb{Z}_2^{2n \times n};$
$e \leftarrow \mathcal{B}_p^{\hat{2}n}$, for $p \in \Theta(1/\sqrt{n});$ b = As + e; Output (A, b)	$b' \leftarrow \mathbb{Z}_2^{2n};$

RUB

Given two distributions:

LPN	<u>Uniform</u>
$egin{array}{lll} A \leftarrow \mathbb{Z}_2^{2n imes n};\ s \leftarrow \mathbb{Z}_2^n; \end{array}$	$A \leftarrow \mathbb{Z}_2^{2n \times n};$
$e \leftarrow \mathcal{B}_p^{ar{2}n}$, for $p \in \Theta(1/\sqrt{n});$	11 220
b = As + e; Output (A, b)	$b' \leftarrow \mathbb{Z}_2^{2n};$ Output (A, b')

Known PKE Constructions

Simple CCA from Low-Noise LPN PKC 2014 26.03.2014

Known PKE Constructions

A IND-CPA secure PKE by Alekhnovich [Ale03]. A TBE by Döttling et al. [DMQN12].

Simple CCA from Low-Noise LPN PKC 2014 26.03.2014

Known PKE Constructions

RUB

A IND-CPA secure PKE by Alekhnovich [Ale03]. A TBE by Döttling et al. [DMQN12].

TBE by Döttling et al. [DMQN12]

•
$$B_1,\ldots,B_q \subset pk, B_1,\ldots,B_q \in \mathbb{Z}_2^{\Theta(n) \times n}.$$

Known PKE Constructions

RUB

A IND-CPA secure PKE by Alekhnovich [Ale03]. A TBE by Döttling et al. [DMQN12].

TBE by Döttling et al. [DMQN12]

•
$$B_1,\ldots,B_q \subset pk, B_1,\ldots,B_q \in \mathbb{Z}_2^{\Theta(n) \times n}.$$

• An encryption uses a B_{τ} which is derived from B_1, \ldots, B_q .

Known PKE Constructions

A IND-CPA secure PKE by Alekhnovich [Ale03]. A TBE by Döttling et al. [DMQN12].

TBE by Döttling et al. [DMQN12]

•
$$B_1,\ldots,B_q \subset pk, B_1,\ldots,B_q \in \mathbb{Z}_2^{\Theta(n) \times n}.$$

- An encryption uses a B_{τ} which is derived from B_1, \ldots, B_q .
- This results in a large public key ($q \approx 400$).

RUB

Outline

2 Low-Noise LPN

3 Applying Techniques of LWE-Based Schemes

4 Simple TBE Based on Low-Noise LPN

RUB

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$

Simple CCA from Low-Noise LPN/PKC 2014/26.03.2014

RUB

LWE-Based Trapdoor Mechanism [MP12]

► $sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$

$$\, \bullet \, \tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}.$$

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$.

$$\bullet \ \tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}.$$

• $c :\approx As$, $c_1 :\approx Bs + G\tau s$, for an error correction matrix G.

RUB

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$.

•
$$\tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}$$
.

c :≈ As, c₁ :≈ Bs + Gτs, for an error correction matrix G. To reconstruct s ∈ Zⁿ_p, c₁ − Tc ≈ Gτs is computed.

RUB

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$.

$$\bullet \ \tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}.$$

c :≈ As, c₁ :≈ Bs + Gτs, for an error correction matrix G. To reconstruct s ∈ Zⁿ_p, c₁ − Tc ≈ Gτs is computed.

•
$$B' := TA - G\tau^*$$
 is as close to uniform as B .

RUB

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$.

•
$$\tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}$$
.

- c :≈ As, c₁ :≈ Bs + Gτs, for an error correction matrix G. To reconstruct s ∈ Zⁿ_p, c₁ − Tc ≈ Gτs is computed.
- $B' := TA G\tau^*$ is as close to uniform as B.

• For
$$c'_1 :\approx B's + G\tau s$$
:

$$c_1' - Tc pprox G(au - au^*)s$$

and s is reconstructable for all $\tau \neq \tau^*$.

Lattice-Based Trapdoor Mechanism

RUB

LWE-Based Trapdoor Mechanism [MP12]

►
$$sk = T \in \{0,1\}^{\omega(n) \times \omega(n)}$$
, $pk = (A, B := TA) \in \mathbb{Z}_p^{\omega(n) \times n}$

•
$$\tau, \tau^* \in \mathcal{T} = \mathbb{F}_{p^n} \subset \mathbb{Z}_p^{n \times n}$$
.

c :≈ As, c₁ :≈ Bs + Gτs, for an error correction matrix G. To reconstruct s ∈ Zⁿ_p, c₁ − Tc ≈ Gτs is computed.

•
$$B' := TA - G\tau^*$$
 is as close to uniform as B .

• For
$$c'_1 :\approx B's + G\tau s$$
:

$$c_1' - Tc pprox G(au - au^*)s$$

and s is reconstructable for all $\tau \neq \tau^*$.

• For $\tau = \tau^*$ some instances remain hard.

•
$$A, B \in \mathbb{Z}_2^{2n \times n}, \ \mathcal{T} = \mathbb{F}_{2^n} \subset \mathbb{Z}_2^{n \times n}.$$

- $A, B \in \mathbb{Z}_2^{2n \times n}, \ \mathcal{T} = \mathbb{F}_{2^n} \subset \mathbb{Z}_2^{n \times n}.$
- G is a binary error correction code.

- $A, B \in \mathbb{Z}_2^{2n \times n}, \ \mathcal{T} = \mathbb{F}_{2^n} \subset \mathbb{Z}_2^{n \times n}.$
- G is a binary error correction code.
- Sample T such that the noise in c − Tc₁ is small, while B := TA is close to uniform.

- $A, B \in \mathbb{Z}_2^{2n \times n}, \ \mathcal{T} = \mathbb{F}_{2^n} \subset \mathbb{Z}_2^{n \times n}.$
- *G* is a binary error correction code.
- Sample T such that the noise in c − Tc₁ is small, while B := TA is close to uniform.
- ► Either the noise is too big or *B* is not close to uniform.

- $A, B \in \mathbb{Z}_2^{2n \times n}, \ \mathcal{T} = \mathbb{F}_{2^n} \subset \mathbb{Z}_2^{n \times n}.$
- *G* is a binary error correction code.
- Sample T such that the noise in c − Tc₁ is small, while B := TA is close to uniform.
- Either the noise is too big or *B* is not close to uniform.
- ► This approach does not immediately apply to LPN.

RUHR-UNIVERSITÄT BOCHUM

Replacing the Leftover Hash Lemma

Using a Trapdoor with Low Entropy

• Sample T from $\mathcal{B}_p^{2n \times 2n}$, $p \in \Theta(1/\sqrt{n})$.

Replacing the Leftover Hash Lemma

Using a Trapdoor with Low Entropy

- Sample T from $\mathcal{B}_p^{2n \times 2n}$, $p \in \Theta(1/\sqrt{n})$.
- A, B = TA is computationally indistinguishable from uniform.

Replacing the Leftover Hash Lemma

Using a Trapdoor with Low Entropy

- Sample T from $\mathcal{B}_p^{2n \times 2n}$, $p \in \Theta(1/\sqrt{n})$.
- A, B = TA is computationally indistinguishable from uniform.
- ► While switching B = TA to $B' = TA G\tau^*$, we loose access to the trapdoor T.

Replacing the Leftover Hash Lemma

Using a Trapdoor with Low Entropy

- Sample T from $\mathcal{B}_p^{2n \times 2n}$, $p \in \Theta(1/\sqrt{n})$.
- A, B = TA is computationally indistinguishable from uniform.
- While switching B = TA to $B' = TA G\tau^*$, we loose access to the trapdoor T.
- How to answer decryption queries?

RUB

The Two Trapdoors Approach

• We use two trapdoors $sk_0 = T_0$ and $sk_1 = T_1$.

RUB

The Two Trapdoors Approach

• We use two trapdoors $sk_0 = T_0$ and $sk_1 = T_1$.

•
$$pk = (A, B_0, B_1)$$

RUB

The Two Trapdoors Approach

- We use two trapdoors $sk_0 = T_0$ and $sk_1 = T_1$.
- $pk = (A, B_0, B_1)$
- sk_0 is a trapdoor for (A, B_0) and sk_1 for (A, B_1) .

Switching the Public Key

pk = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).

- *pk* = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).
- Switch $pk = (A, B_0, B_1)$ to (A, B_0, B'_1) while having access to sk_0 .

- *pk* = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).
- Switch $pk = (A, B_0, B_1)$ to (A, B_0, B'_1) while having access to sk_0 .
- sk_1 is now a trapdoor for all $\tau \neq \tau^* \in \mathcal{T}$.

- *pk* = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).
- Switch $pk = (A, B_0, B_1)$ to (A, B_0, B'_1) while having access to sk_0 .
- sk_1 is now a trapdoor for all $\tau \neq \tau^* \in \mathcal{T}$.
- Switch (A, B_0, B'_1) to $pk' = (A, B'_0, B'_1)$ while having access to sk_1 .

- *pk* = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).
- Switch $pk = (A, B_0, B_1)$ to (A, B_0, B'_1) while having access to sk_0 .
- sk_1 is now a trapdoor for all $\tau \neq \tau^* \in \mathcal{T}$.
- Switch (A, B_0, B'_1) to $pk' = (A, B'_0, B'_1)$ while having access to sk_1 .
- sk_0 and sk_1 are now trapdoors for all $\tau \neq \tau^* \in \mathcal{T}$.

- *pk* = (A, B₀, B₁) is computationally indistinguishable from *pk'* = (A, B'₀, B'₁).
- Switch $pk = (A, B_0, B_1)$ to (A, B_0, B'_1) while having access to sk_0 .
- sk_1 is now a trapdoor for all $\tau \neq \tau^* \in \mathcal{T}$.
- Switch (A, B_0, B'_1) to $pk' = (A, B'_0, B'_1)$ while having access to sk_1 .
- sk_0 and sk_1 are now trapdoors for all $\tau \neq \tau^* \in \mathcal{T}$.
- ► Once pk' is used, decrypting ciphertexts with tag \(\tau^*\) is hard, given sk_0 and sk_1.

RUHR-UNIVERSITÄT BOCHUM

Outline

1 IND-CCA PKE

2 Low-Noise LPN

3 Applying Techniques of LWE-Based Schemes

4 Simple TBE Based on Low-Noise LPN

RUB

A TBE Based on Low-Noise LPN

The Construction

• Gen(1^k): Output $sk := T_0$, $pk := (A, B_0 := T_0A, B_1 := T_1A, C)$ for $T_0, T_1 \leftarrow \mathcal{B}_p^{2n \times 2n}$ and $A, C \leftarrow \mathbb{Z}_2^{2n \times n}$.

A TBE Based on Low-Noise LPN

The Construction

- Gen(1^k): Output $sk := T_0$, $pk := (A, B_0 := T_0A, B_1 := T_1A, C)$ for $T_0, T_1 \leftarrow \mathcal{B}_p^{2n \times 2n}$ and $A, C \leftarrow \mathbb{Z}_2^{2n \times n}$.
- $Enc(pk, \tau, m)$: Sample randomness $s \leftarrow \mathbb{Z}_2^n$. Output

$$c :\approx As,$$
 $c_0 :\approx (B_0 + G\tau)s,$
 $c_1 :\approx (B_1 + G\tau)s,$ $c_2 :\approx Cs + Gm.$

A TBE Based on Low-Noise LPN

The Construction

- Gen(1^k): Output $sk := T_0$, $pk := (A, B_0 := T_0A, B_1 := T_1A, C)$ for $T_0, T_1 \leftarrow \mathcal{B}_p^{2n \times 2n}$ and $A, C \leftarrow \mathbb{Z}_2^{2n \times n}$.
- $Enc(pk, \tau, m)$: Sample randomness $s \leftarrow \mathbb{Z}_2^n$. Output

$$c :\approx As,$$
 $c_0 :\approx (B_0 + G\tau)s,$
 $c_1 :\approx (B_1 + G\tau)s,$ $c_2 :\approx Cs + Gm.$

► $Dec(sk, \tau, (c, c_0, c_1, c_2))$: Reconstruct *s* from $c_0 - T_0c \approx G\tau s$. Check consistency of c_1 with *s*. Reconstruct *m* from $c_2 - Cs \approx Gm$. Output *m*. Summary

Summary

- We construct a TBE, which can be transformed to an IND-CCA PKE.
- ► The security is based on the Low-Noise LPN assumption.
- pk is computationally indistinguishable from pk'.
- For pk', decrypting ciphertexts associated with τ^* is hard.
- ► While switching *pk* to *pk'* two trapdoors are used to answer decryption queries.

RUHR-UNIVERSITÄT BOCHUM

Many thanks for your attention!

QUESTIONS?

hgi Horst Görtz Institut für IT-Sicherheit 18/19

Simple CCA from Low-Noise LPN PKC 2014 26.03.2014

References

RUB

Michael Alekhnovich.

More on average case vs approximation complexity. In 44th Annual Symposium on Foundations of Computer Science, pages 298–307. IEEE Computer Society Press, October 2003.

Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. *SIAM Journal on Computing*, 36(5):1301–1328, 2007.

Dan Boneh and Jonathan Katz.

Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In Alfred Menezes, editor, *Topics in Cryptology – CT-RSA 2005*, volume 3376 of *Lecture Notes in Computer Science*, pages 87–103. Springer, February 2005.

Nico Döttling, Jörn Müller-Quade, and Anderson CA Nascimento. Ind-cca secure cryptography based on a variant of the Ipn problem. In *Advances in Cryptology–ASIACRYPT 2012*, volume 7658, pages 485–503. Springer, 2012.

Eike Kiltz.

Chosen-ciphertext security from tag-based encryption.

In Shai Halevi and Tal Rabin, editors, *TCC 2006: 3rd Theory of Cryptography Conference*, volume 3876 of *Lecture Notes in Computer Science*, pages 581–600. Springer, March 2006.

Daniele Micciancio and Chris Peikert.

Trapdoors for lattices: Simpler, tighter, faster, smaller. In David Pointcheval and Thomas Johansson, editors, *Advances in Cryptology – EUROCRYPT 2012*, volume 7237 of *Lecture Notes in Computer Science*, pages 700–718. Springer, April 2012.